Construction of sub micro-nano-structured silicon based anode for lithium-ion batteries

Author:

Su Chen,Shodievich Kurbanov Mirtemir,Zhao Yi,Ji Puguang,Zhang Xin,Wang Hua,Zhang ChengweiORCID,Wang GongkaiORCID

Abstract

Abstract The significant volume change experienced by silicon (Si) anodes during lithiation/delithiation cycles often triggers mechanical-electrochemical failures, undermining their utility in high-energy-density lithium-ion batteries (LIBs). Herein, we propose a sub micro-nano-structured Si based material to address the persistent challenge of mechanic-electrochemical coupling issue during cycling. The mesoporous Si-based composite submicrospheres (M-Si/SiO2/CS) with a high Si/SiO2 content of 84.6 wt.% is prepared by magnesiothermic reduction of mesoporous SiO2 submicrospheres followed by carbon coating process. M-Si/SiO2/CS anode can maintain a high specific capacity of 740 mAh g−1 at 0.5 A g−1 after 100 cycles with a lower electrode thickness swelling rate of 63%, and exhibits a good long-term cycling stability of 570 mAh g−1 at 1 A g−1 after 250 cycles. This remarkable Li-storage performance can be attributed to the synergistic effects of the hierarchical structure and SiO2 frameworks. The spherical structure mitigates stress/strain caused by the lithiation/delithiation, while the internal mesopores provide buffer space for Si expansion and obviously shorten the diffusion path for electrolyte/ions. Additionally, the amorphous SiO2 matrix not only servers as support for structure stability, but also facilitates the rapid formation of a stable solid electrolyte interphase layer. This unique architecture offers a potential model for designing high-performance Si-based anode for LIBs.

Funder

International Cooperation Project of National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Planning Project of Tianjin City

Central Guidance on Local Science and Technology Development Fund of Hebei Province

Jian-Hua Research Foundation of Hebei University of Technology

Natural Science Foundation of Hebei Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3