Single-nanowire-morphed mechanical slingshot for directional shooting delivery of micro-payloads

Author:

Zhang Ying,Yan JiangORCID,Li Dianlun,Qian Wentao,Qi Yongjia,Wu Lei,Liu Zongguang,Wang JunzhuanORCID,Xu JunORCID,Yu LinweiORCID

Abstract

Abstract Stretching elastomer bands to accumulate strain energy, for a sudden projectile launching, has been an old hunting skill that will continue to find new applications in miniaturized worlds. In this work, we explore the use of highly resilient and geometry-tailored ultrathin crystalline silicon nanowires (SiNWs) as elastic medium to fabricate the first, and the smallest, mechanical slingshot. These NW-morphed slingshots were first grown on a planar surface, with desired layout, and then mounted upon standing pillar frames, with a unique self-hooking structure that allows for a facile and reliable assembly, loading and shooting maneuver of microsphere payloads. Impressively, the elastic spring design can help to store 10 times more strain energy into the NW springs, compared with the straight ones under the same pulling force, which has been strong enough to overcome the sticky van der Waals (vdW) force at the touching interfaces that otherwise will hinder a reliable releasing onto soft surface with low-surface energy or adhesion force, and to achieve a directional shooting delivery of precise amount of tiny payload units onto delicate target with the least impact damage. This NW-morphing construction strategy also provides a generic protocol/platform to fast design, prototype, and deploy new nanoelectromechanical and biological applications at extremely low costs.

Funder

Fundamental Research Funds for the Central Universities

Key R&D Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3