Rapid FRET-based homogeneous immunoassay of procalcitonin using matched carbon dots labels

Author:

Liu Bo,Yang Kun,Lu Siyu,Cai Junjie,Li Fan,Tian FengORCID

Abstract

Abstract A novel method for the detection of procalcitonin in a homogeneous system by matched carbon dots (CDs) labeled immunoprobes was proposed based on the principle of FRET and double antibody sandwich method. Blue-emitting carbon dots with a strong fluorescence emission range of 400–550 nm and red-emitting carbon dots with the best excitation range of 410–550 nm were prepared before they reacted with procalcitonin protoclone antibody pairs to form immunoprobes. According to the principles of FRET, blue-emitting carbon dots were selected as the energy donor and red-emitting carbon dots as the energy receptor. The external light source excitation (310 nm) could only cause weak luminescence of CDs. However, once procalcitonin was added, procalcitonin and antibodies would be combined with each other quickly (≤20 min). Here, blue-emitting carbon dots acquired energy could be transferred to red-emitting carbon dots efficiently, causing the emitted fluorescence enhancement of red-emitting carbon dots. The fluorescence detection results in PBS buffer solution and diluted rabbit blood serum showed that the fluorescence intensity variation was linear with the concentration of procalcitonin. There was a good linear relationship between F/F0 and procalcitonin concentrations in PBS buffer solution that ranged from 0 to 100 ng ml−1, and the linear equation was F/F0 = 0.004 * C pct + 0.98359. Detection in the diluted rabbit serum led to the results that were linear in two concentration ranges, including 0–40 ng ml−1 and 40–100 ng ml−1, and the detection limit based on 3σ K−1 was 0.52 ng ml−1. It is likely that this matched CDs labeled immunoprobes system can provide a new mode for rapid homogeneous detection of disease markers.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3