A wearable 3D pressure sensor based on electrostatic self-assembly MXene/chitosan sponge and insulating PVP spacer

Author:

Liu ZeruiORCID,Zhang Yulin,Song Yuxiang,Lu YongORCID,Liu Ting,Zhang Jicai

Abstract

Abstract It has been shown that flexible pressure sensors may be used in many different contexts, including human-machine interaction, intelligent robots, and health monitoring. In this work, we create a 3D sponge piezoresistive pressure sensor using MXene, chitosan, polyurethane sponge, and polyvinyl pyrrolidone (MXene/CS/PU sponge/PVP), with the well-conductive MXene nanosheet serving as the force sensitive material. In particular, the mechanical strength and endurance of the sensor are enhanced by electrostatic self-assembly between the negatively charged MXene nanosheets and the positively charged CS/PU composite sponge skeleton. The insulating PVP nanowires (PVP-NWs) also decreases the device’s initial current, increasing the sensor’s sensitivity. These characteristics allow the pressure sensor to simultaneously have a high sensitivity (50.27 kPa−1 for pressure below 7 kPa and 13.3 kPa−1 for pressure between 7 and 16 kPa), a quick response time (160 ms), a short recovery time (130 ms), and excellent cycling stability (5000 cycles). Moreover, the sensor exhibits a waterproof performance, where the force-sensitive layer still works normally after cleaning. In practice, the sensor could detect a variety of human actions as well as the distribution of spatial pressure due to the above superior device performance.

Funder

Shandong Provincial Major Scientific and Technological Innovation Project

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Key-area research and development program of Guangdong Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3