Multilayer α′-4H-Borophene Growth on Gallium Arsenide towards High-Performance Near-Infrared Photodetector

Author:

Liang Xinchao,Hou Chuang,Wu ZenghuiORCID,Wu Zitong,Tai GuoanORCID

Abstract

Abstract Multilayer borophene was predicted to have a similar semiconductor property to its monolayer arise from the weak van der Waals interactions between the layers. Besides, multilayer borophene has a higher carrier mobility than monolayer ones, so it is placed great hopes in applications of photoelectric and photovoltaic devices. However, its preparation and application in experiments of multilayer borophene are still lacking. Here, multilayer α′-4H-borophene was synthesized on semiconducting n-type GaAs substrates using NaBH4 source as precursor and hydrogen as the carrier gas under controlled temperature and pressure conditions. The experimental results of the borophene are in good agreement with those of its theoretical prediction. The borophene is a semiconductor with a bandgap of 2.48 eV. To demonstrate the device application potential of the borophene, a near-infrared photodetector composed of p-type borophene and n-type GaAs was fabricated. The photodetector shows a high photoresponsivity of 0.31 mA•W-1, a high specific detectivity of 108 Jones, and a fast response or recovery speed of 117 or 109 ms under the irradiation with the wavelength of 940 nm at zero bias. The results prove that the α′-4H-borophene/GaAs photodetector can show high sensitivity and zero consumption, which is of great value in meeting the appeal of sustainable development of society.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Fund of Prospective Layout of Scientific Research for NUAA

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3