Abstract
Abstract
Atomic force microscopy (AFM) allows submolecular resolution imaging of organic molecules deposited on a surface by using CO-functionalized qPlus sensors under ultrahigh vacuum and low temperature conditions. However, the experimental determination of the adsorption sites of these organic molecules requires the precise identification of the atomic structure of the surface on which they are adsorbed. Here, we develop an automation method for AFM imaging that provides in a single image both, submolecular resolution on organic molecules and atomic resolution on the surrounding metallic surface. The method is based on an adaptive tunnelling current feedback system that is regulated according to the response of the AFM observables, which guarantees that both the molecules and the surface atoms are imaged under optimum conditions. Therewith, the approach is suitable for imaging adsorption sites of several adjacent and highly mobile molecules such as 2-iodotriphenylene on Ag(111) in a single scan. The proposed method with the adaptive feedback system facilitates statistical analysis of molecular adsorption geometries and could in the future contribute to autonomous AFM imaging as it adapts the feedback parameters depending on the sample properties.
Funder
Deutsche Forschungsgemeinschaft
European Union Next Generation EU together with the “Plan de Recuperación, Transformación y Resiliencia” from the Spanish Government and La Generalitat de Catalunya
LOEWE Program of Excellence of the Federal State of Hesse
European Regional Development Fund