Enhanced electrical conductivity of anticorrosive coatings by functionalized carbon nanotubes: effect of hydrogen bonding

Author:

Lou DingORCID,Younes Hammad,Yang Jack,Jasthi Bharat K,Hong George,Hong HaipingORCID,Tolle Charles,Bailey Craig,Widener Christian,Hrabe Rob

Abstract

Abstract Carbon nanotubes and nanofibers (CNFs) are well-known nano additives to produce coating materials with high electrical and thermal conductivity and corrosion resistance. In this paper, coating materials incorporating hydrogen bonding offered significantly lower electrical resistance. The hydrogen bonding formed between functionalized carbon nanotubes and ethanol helped create a well-dispersed carbon nanotube network as the electron pathways. Electrical resistivity as low as 6.8 Ω cm has been achieved by adding 4.5 wt% functionalized multiwalled carbon nanotubes (MWNT-OH) to 75%polyurethane/25%ethanol. Moreover, the thermal conductivity of polyurethane was improved by 332% with 10 wt% addition of CNF. Electrochemical methods were used to evaluate the anti-corrosion properties of the fabricated coating materials. 75%polyurethane/25%ethanol with the addition of 3.0 wt% of MWNT-OH showed an excellent corrosion rate of 5.105 × 10–3 mm year−1, with a protection efficiency of 99.5% against corrosive environments. The adhesion properties of the coating materials were measured following ASTM standard test methods. 75%polyurethane/25%ethanol with 3.0 wt% of MWNT-OH belonged to class 5 (ASTM D3359), indicating the outstanding adhesion of the coating to the substrate. These nanocoatings with enhanced electrical, thermal, and anti-corrosion properties consist of a choice of traditional coating materials, such as polyurethane, yielding coating durability with the ability to tailor the electrical and thermal properties to fit the desired application.

Funder

Army Research Laboratory

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3