Unveiling the interplay between induced native defects and room temperature magnetic ordering in titanium deficient disordered-TiO2 nanoparticles

Author:

Dhakshinamoorthy JayaseelanORCID,Srivastava Sachin Kumar,Mishra DurgamadhabORCID,Pullithadathil BijiORCID

Abstract

Abstract Understanding the origin of magnetic ordering in an undoped semiconductor with native defects is an open question, which is being explored actively in research. In this investigation, the interplay between magnetic ordering and excess induced native defects in undoped anatase TiO2 nanoparticles is explained using an experimental and theoretical approach. It is demonstrated that structurally disordered TiO2 nanoparticles with a high concentration of native defects such as titanium interstitials and oxygen vacancies are synthesized using controlled atmospheric rapid cooling (i.e. quenching) process. The structural disorders in the lattice have been examined using various spectroscopic and microscopic analyses revealed the existence of Ti deficiency in both pristine and quenched TiO2 nanoparticles. A possible origin of magnetic ordering in titanium deficient anatase TiO2 system is elucidated based on first-principle calculations. It was found that the overall magnetic moment of Ti deficient TiO2 system is determined by the distance between Ti interstitials and its neighboring vacancies (i.e. either V Ti or V Os). However, quenched TiO2 nanoparticles possess excess Ti interstitials, Ti and O vacancies and therefore the net magnetic moment of the system is reduced due to anti-ferromagnetically coupled neighboring Tilattice ions.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3