Formulation of dual functional gCN/TeO2-ZnO nanocomposites as a controlled release nanofertilizer and antibacterial agent

Author:

Singh Aishwarya,Dasauni Khushboo,KumarNailwal Tapan,Nenavathu Bhavani PrasadORCID

Abstract

Abstract A simple cost-effective sono-chemical method was used for the synthesis of gCN/TeO2-ZnO ternary (2%, 5%, and 10%) nanocomposites, having crystallite size of 12 nm. FE-SEM and transmission electron microscopy images revealed the formation of core–shell type nanocomposites with an average size of 50 nm. Further, E. coli MTCC 443 strain is used as a model organism to study the antibacterial activity of the prepared nanocomposites, using disc diffusion method. Among all the concentrations, 2% gCN/TeO2-ZnO showed maximum zone of inhibition of 23 ± 0.10 mm and its antibacterial activity is like third-generation antibiotic cefotaxime. In addition, the prepared nanocomposites were used as nanofertilizer for the growth of gram seeds Chickpea (Cicer arietinum). The effect of nanocomposite concentration and its sterilising properties are studied on the rate of germination of Chickpea using both in vitro and in vivo studies (pot study). The root length of the gCN/TeO2-ZnO treated plants showed increase in seed germination (3.30 cm) compared to untreated plants (3.22 cm). In addition, enhancement in the shoot length about 28% is noticed in pot studies, compared to control batch samples. The accumulation of nanomaterial in plant roots was confirmed using SEM-EDX and ICP-MS. Finally, a 14-day experiment was conducted to ascertain the role of gCN/TeO2-ZnO in the controlled release of nutrients from the synthesised nanofertilizer. Owing to its excellent water holding capacity, sterilizing properties, and low toxicity this material can be used as a growth promoter in plants.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3