Abstract
Abstract
Electrochemical activation is an effective method for synthesizing economically feasible heterogeneous hydrogen evolution reaction (HER) electrocatalysts. Herein, we first synthesized MoO2-Co2Mo3O8 precatalyst, which was electrochemically activated to produce K2Mo3O10 within the original phase to form the heterogeneous structure. The electrochemically activated samples demonstrate exceptional HER activity in alkaline medium, which exhibit a low overpotential of 31 mV at current density of 10 mA cm−2 (135 mV at 100 mA cm−2), as well as a small Tafel slope of 34 mV dec−1. This is due to the creation of multiphase heterostructures that prompt interfacial interactions and accelerate charge transfer. Simultaneously, the creation of additional active sites increases their intrinsic activities. The combined effects collectively enhance the HER performance. The application of this method in the preparation of HER catalysts is still relatively unexplored, thus rendering our work a pioneering contribution to the field.
Funder
Science and Technology Planning Project of Inner Mongolia
Local Science and Technology Development Project of the Central Government
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献