Pseudo single domain NiZn-γFe2O3 colloidal superparamagnetic nanoparticles for MRI-guided hyperthermia application

Author:

Kim Ji-Wook,Wang Jie,Kim Hyungsub,Bae SeongtaeORCID

Abstract

Abstract Magnetic resonance imaging (MRI)-guided magnetic nanofluid hyperthermia (MNFH) is highly desirable in cancer treatment because it can allow for diagnosis, therapeutics, and prognosis simultaneously. However, the application of currently developed iron-oxide based superparamagnetic nanoparticles (IOSPNPs) for an MRI-guided MNFH agent is technically limited by the low AC heat induction power at the physiologically tolerable range of AC magnetic field (H AC,safe), and the low transverse r 2-relaxivity responsible for the insufficient heating of cancers, and the low resolution of contrast imaging, respectively. Here, pseudo single domain colloidal Ni x Zn1−x γFe2O3 (x = 0.6) superparamagnetic nanoparticle (NiZn-γFe2O3 PSD-SPNP) physically and theoretically designed at the H AC,safe, specifically by the applied frequency, is proposed for a highly enhanced MRI-guided MNFH agent application. The NiZn-γFe2O3 PSD-SPNP showed the superparamagnetic characteristics, significantly enhanced AC heat induction performance (ILP = 6.3 nHm2 kg−1), highly improved saturation magnetization (M s = 97 emu g−1 Fe, 3.55 × 105 A m−1) and r 2-relaxivity (r 2 = 396 mM−1 s−1) that are desirable for highly efficient MRI-guided MNFH agent applications. According to the analyzed results, the remarkably enhanced effective relaxation time constant and its dependent out-of-phase magnetic susceptibility, as well as the DC/AC magnetic softness optimized by the PSD-SPNP at the H AC,safe were revealed as the main physical reason for the significance. All the fundamental in vitro and in vivo experimental results demonstrated that the physically designed NiZn-γFe2O3 PSD-SPNP is bio-technically feasible for a highly efficient MRI-guided MNFH agent for future cancer nanomedicine.

Funder

College of Engineering and Computing

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3