Effect of annealing temperature on structural and electrochemical behaviour on MgFe2O4 as electrode material in neutral aqueous electrolyte for supercapacitors

Author:

Palani HemaORCID,Rastogi AnkurORCID

Abstract

Abstract Binary metal oxides possess unique structures and multiple oxidation states, making them highly valuable in electrochemical analysis. This study aims to determine the effect of annealing temperature on the electrochemical properties of magnesium ferrite when used as an electrode material in a neutral aqueous electrolyte. We utilized the sol–gel technique to synthesize the material and annealed it at various temperatures. Our analysis of the material using different characterization techniques reveals significant changes in its structural and electrochemical properties. We found that the material exhibited a range of phases, and higher annealing temperatures led to improved electrochemical properties. The electrochemical measurements showed reversible and redox pseudo-capacitance behavior, with the material annealed at 500 °C exhibiting the highest specific capacitance of 117 F g−1 at a current density of 0.5 A g−1. Capacitive and diffusion-controlled processes govern the total charge storage mechanism, and their contribution changes significantly as the annealing temperature varies. The capacitance retention of 500 °C annealed sample was 58% and it remained stable. This work establishes a correlation between annealing temperature on structural, morphological, and electrochemical behavior, thereby opening up avenues for tailoring them effectively. These findings can be useful in the development of future electrode materials for electrochemical applications.

Funder

VIT University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3