Surface induced melting of long Al nanowires: phase field model and simulations for pressure loading and without it

Author:

Javanbakht MahdiORCID,Eskandari Shekoofeh Salehi,Silani MohammadORCID

Abstract

Abstract In this paper, melting of long Al nanowires is studied using a phase field model in which deviatoric transformation strain described by a kinetic equation produces a promoting driving force for both melting and solidification and consequently, a lower melting temperature is resolved. The coupled system of the Ginzburg–Landau equation for solidification/melting transformation, the kinetic equation for the deviatoric transformation strain and elasticity equations are solved using the COMSOL finite element code to obtain the evolution of melt solution. A deviatoric strain kinetic coefficient is used which results in the same pressure as that calculated with the Laplace equation in a solid neglecting elastic stresses. The surface and bulk melting temperatures are calculated for different nanowire diameters without mechanical loading which shows a good agreement with existing MD and analytical results. For radii R > 5 nm, a complete surface solid-melt interface is created which propagates to the center. For smaller radii, premelting occurs everywhere starting from the surface and the nanowire melts without creating the interface. The melting rate shows an inverse power relationship with radius for R < 15 nm. For melting under pressure, the model with constant bulk modulus results in an unphysical parabolic variation versus pressure in contrast to the almost linear increase of the melting temperature versus pressure from known MD simulations. Such drawback is resolved by considering the pressure dependence of the bulk modulus through the Murnaghan’s equation due to which an almost linear increase of the melting temperature versus pressure is obtained. Also, a reduction of the interface width and a significant increase of the melting rate versus pressure are found. The presented model and results allow for a better understanding of the premelting and melting of different metallic nanowires with various loading conditions and structural defects.

Funder

Iran National Science Foundation

Isfahan University of Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3