Probing the optical near-field of plasmonic nano structure using scanning thermal microscopy

Author:

Nam Kiin,Kim Hyuntae,Park Woongkyu,Ahn Jae SungORCID,Choi Soobong

Abstract

Abstract Scanning thermal microscopy (SThM) enables to obtain thermal characteristic information such as temperature and thermal conductivity from the signals obtained by scanning a thermometer probe over a sample surface. Particularly, the precise control of the thermometer probe makes it possible to study near-field radiative heat transfer by measuring the near-field thermal energy, which implies that when light is used as a local heat source, photothermal energy can be detected from the optical near-field by approaching the probe in the near-field region. In this study, SThM is applied to generate sub-wavelength near-field optical image in the plasmonic grating coupler. Herein, by controlling the surface plasmon polariton generation, we show that the dominant component of SThM signal is from the optical response rather than the thermal response. The obtained near-field optical images have a spatial resolution of 40 nm and signal to noise ratio of up to 19.8. In addition, field propagation images in the Z-direction can be visualised with the precise control of the distance between the thermometer probe and the sample

Funder

Incheon National University

Ministry of Science and ICT

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3