A-site deficient La0.52Sr0.28Ti0.94Ni0.06O3 by low-pulsed electric current treatment: achieved exsolution of B-site Ni nanoparticles and significant improvement of electrocatalytic properties

Author:

Yu Wenwen,Qi JingangORCID,Hu Xin,Qiao Sifan,Shang Jian,Liu Liang,Wang BingORCID,Tang Lidan,Zhang WeiORCID,Cheng Yu

Abstract

Abstract Perovskite materials with exsolved nanoparticles have a wide range of applications in energy conversion systems owing to their unique basal plane active sites and excellent catalytic properties. The introduction of A-site deficiency can help the formation of highly mobile oxygen vacancies and remarkably enhance the reducibility of Ni nanoparticles, thus significantly increasing electronic conductivity and catalytic activity simultaneously. Herein, we adopt pulsed electric current (PEC) treatment, a novel approach instead of the long-time high-temperature reduction technique, and for the first time review that the exsolution of minuscule Ni nanoparticles (8–20 nm) could be facilitated on Ni-doped La0.52Sr0.28Ti0.94Ni0.06O3 (LSTN) anodes with A-site deficiency. Encouragingly, finding that low PEC can successfully lead to nanoparticle exsolution and show a significantly improved oxygen evolution reaction performance of LSTN-PEC (LSTN after PEC treatment) possessing A-site deficiency, the onset potential of LSTN-PEC (500 V) (LSTN after PEC treatment with 500 V–4 Hz–90 s) was advanced by 0.173 V, the R ct value was reduced by 82.38 Ω·cm2, and the overpotential was also reduced by 73 mV.

Funder

National Natural Science Foundation of China

Liaoning BaiQianWan Talents Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3