Abstract
Abstract
Magnetic resonance imaging (MRI) contrast agents with the particle diameter of around 3–10 nm hold the potential to be selectively uptaken by lymphatic vessels and be filtered in the kidney for final excretion. However, there are no existing MRI contrast agents based on gadolinium (Gd) complexes within the size of this range, and thus the selective imaging of the lymphatic system has not yet been achieved. In our previous report, we succeeded in fabricating nano-scale MRI contrast agents by complexing ordinary contrast agents (Gd-diethylenetriaminepentaacetic acid (DTPA)) with carboxylated nanodiamond (CND) particles to conquer this problem. However, DTPA has recently been reported to release Gd ions in the course of time, leading to the potential danger of severe side effects in the human body. In this study, we utilized cyclic-chained DOTA as an alternative chelating material for DTPA to fabricate CND-based MRI contrast agents for the selective lymphatic imaging. The newly fabricated contrast agents possessed the diameter ranging from 3 to 10 nm in distilled water and serum, indicating that these particles can be selectively uptaken by lymphatic vessels and effectively filtered in the kidney. Furthermore, the DOTA-applied CND contrast agents exhibited stronger MRI visibility in water and serum compared to DTPA-applied CND contrast agents. These results indicate that DOTA-applied CND contrast agents are promising materials for the selective MR imaging of lymphatic systems.
Funder
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献