3-bit multilevel operation with accurate programming scheme in TiO x /Al2O3 memristor crossbar array for quantized neuromorphic system

Author:

Kim Tae-HyeonORCID,Lee Jaewoong,Kim Sungjoon,Park Jinwoo,Park Byung-Gook,Kim HyungjinORCID

Abstract

Abstract As interest in artificial intelligence (AI) and relevant hardware technologies has been developed rapidly, algorithms and network structures have become significantly complicated, causing serious power consumption issues because an enormous amount of computation is required. Neuromorphic computing, a hardware AI technology with memory devices, has emerged to solve this problem. For this application, multilevel operations of synaptic devices are important to imitate floating point weight values in software AI technologies. Furthermore, weight transfer methods to desired weight targets must be arranged for off-chip training. From this point of view, we fabricate 32 × 32 memristor crossbar array and verify the 3-bit multilevel operations. The programming accuracy is verified for 3-bit quantized levels by applying a reset-voltage-control programming scheme to the fabricated TiO x /Al2O3-based memristor array. After that, a synapse composed of two differential memristors and a fully-connected neural network for modified national institute of standards and technology (MNIST) pattern recognition are constructed. The trained weights are post-training quantized in consideration of the 3-bit characteristics of the memristor. Finally, the effect of programming error on classification accuracy is verified based on the measured data, and we obtained 98.12% classification accuracy for MNIST data with the programming accuracy of 1.79% root-mean-square-error. These results imply that the proposed reset-voltage-control programming scheme can be utilized for a precise tuning, and expected to contribute for the development of a neuromorphic system capable of highly precise weight transfer.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3