Size effect of hybrid carbon nanofillers on the synergetic enhancement of the properties of HDPE-based nanocomposites

Author:

Evgin TubaORCID,Turgut AlpaslanORCID,Hamaoui GeorgesORCID,Špitalský ZdenoORCID,Horny Nicolas,Altay LütfiyeORCID,Chirtoc MihaiORCID,Omastová MáriaORCID

Abstract

Abstract High-density polyethylene (HDPE)-based hybrid nanocomposites containing graphene nanoplatelets (GnPs) and multiwall carbon nanotubes (MWCNTs) were fabricated using melt mixing followed by compression molding. The influences of size and weight ratio of both carbon-based nanofillers on the electrical, thermal, and mechanical properties of hybrid nanocomposites were evaluated. This study proves that the size and weight ratio of carbon-based nanofillers play a critical role in determining these properties. The optimum size and weight ratio of GnPs and MWCNTs are determined at the maximum achieved enhancement for each property. The HDPE-based nanocomposites containing GnPs with larger surface area and MWCNTs with higher aspect ratio display the highest electrical conductivity at GnPs/MWCNTs weight ratio of 2/3. The combination of GnPs with larger surface area and MWCNTs with lower aspect ratio provides the maximum Young’s modulus enhancement of hybrid nanocomposites at 1/4 weight ratio of GnPs and MWCNTs. The nanocomposite containing GnPs with the largest lateral size and MWCNTs with a higher aspect ratio at a 3/2 weight ratio exhibits the highest thermal conductivity. Also, at around the percolation threshold of GnPs, the incorporation of MWCNTs with larger aspect ratio into the HDPE-based nanocomposites containing GnPs with the largest lateral size shows a distinct synergic effect on the thermal conductivity and Young’s modulus, while an additive effect on the electrical conductivity and thermal stability.

Funder

Slovak Academic Information Agency

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3