Nanohybrids that consisit of p-type, nitrogen-doped ZnO and graphene nanostructures: synthesis, photophysical properties, and biosensing application

Author:

Chen Wei,Zheng HuiORCID,Zheng PengORCID,Wu ZhangtingORCID,Wu Feimei,Liu YanORCID,Huo Dexuan,Zheng Liang,Zhang YangORCID

Abstract

Abstract ZnO, a promising material for optoelectronic applications, has attracted considerable attention due to its wide and direct band gap and large exciton binding energy. To understand the applications of this material, fabrication of high quality p-type ZnO is a key step. However, a reliable p-type doping of this material remains a major challenge. In this study, we report p-type nitrogen-doped ZnO nanoparticle, grown in a nitrogen doped graphene layer matrix by a plasma heating process using a natural protein and zinc nitrate as the precursors. The structural characterizations are developed by several microscopic techniques including the field emission electron microscopy, high resolution transmission electron microscopy, x-ray photoelectron spectroscopy, and micro-Raman analysis. In addition, the ultraviolet (UV)–visible absorption characteristics and photoluminescence properties of the samples are studied. Its p-type conduction behaviour is confirmed by the Hall effect measurement, which was ascribed to the high nitrogen dopant concentration in the Zn-poor ZnO, and the related mechanism for the p-type behaviour is also discussed. Moreover, the results of the glucose detection based on the strong green luminescence of glucose indicate that the nitrogen-doped ZnO nanodots/nitrogen-doped graphene layer nanohybrid is also a competitive candidate in the biosensing field.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3