Abstract
Abstract
Compared with continuous wave lasers, ultrafast lasers have the advantages of ultra-short pulse width and ultra-high peak power, and have significant applications in optical communications, medical diagnostics, and precision machining. Saturable absorber (SA) technology is the most effective technique for the generation of ultra-fast lasers, which are based on artificial SAs and natural SAs. Among them, the semiconductor saturable absorber mirror has become the most commonly used form at present. Recently, basic research and application of nanomaterials such as carbon nanotubes (CNTs) and graphene have been developed rapidly. Researchers have found that nanomaterials exhibit extraordinary characteristics in ultrafast photonics, such as the low saturation intensity of CNTs, zero-band gap of graphene, and extremely high modulation depth of the topological insulator nano-films. Since graphene was first reported as an SA in 2009, many other nanomaterials have been successively explored, resulting in the rapid development of novel nanomaterial-based SAs. In this paper, we classified the nanomaterials used in SA mode-locking technology at 1.5 μm and reviewed their research progress with a particular focus on nonlinear optical properties, integration strategies, and applications in the field of ultrafast photonics.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献