Abstract
Abstract
The elaborate design and synthesis of low-cost, efficient and stable electrocatalysts for the oxygen evolution reaction (OER), which may alleviate the current energy shortage and environment pollution, is still a great challenge. Herein, metal phosphonate precursors with controllable morphologies were synthesized in situ on the surface of nickel foam with different solvents, and could be easily converted into carbon- and nitrogen-doped cobalt phosphate through a calcination method. The OER catalytic performance of the final products was studied in detail. The results showed that the nanowire shaped samples of CoPiNF-800 synthesized with deionized water under hydrothermal conditions had the strongest electrochemical performance. They exhibited extraordinary catalytic activity with a very low overpotential of 222 mV at 100 mA cm−2, the smallest impedance and excellent electrochemical stability. These results not only demonstrate the possibility of preparing low-cost OER catalysts based on transition metal phosphate, but also aid our understanding of the controllable synthesis process of different morphologies.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献