Molten salt synthesis of carbon-doped boron nitride nanosheets with enhanced adsorption performance

Author:

Wang Honghong,Tian Liang,Huang Zhong,Liang Feng,Guan Keke,Jia Quanli,Zhang HaijunORCID,Zhang ShaoweiORCID

Abstract

Abstract Owing to their large specific areas, high thermal stability and chemical inertness, two-dimensional boron carbon nitride nanosheets (BCNNs) have captured much attention in recent years in the field of adsorption of pollutants. The formation of BCNNs via incorporating carbon into boron nitride (BN) can effectively improve the photoelectric and adsorption properties of the latter. In this work, carbon-doped BN (BCN) nanosheets were prepared at 1100 °C via a molten salt route using boric acid, melamine and glucose as the main starting materials. The effects of molten salt type and carbon doping level on the formation of BCN were investigated, and their isothermal adsorption properties in a methylene blue (MB) aqueous solution were evaluated based on the Langmuir and Freundlich models. The results indicated that using molten LiCl-KCl as a liquid medium was more favorable than NaCl-KCl to the formation of BCNNs. As-prepared BC0.4N sample possessed a sheet-like structure of about 10 nm thick and a specific surface area as high as 484 m2 g−1. Moreover, the adsorption test of MB demonstrated a high adsorption capacity of 249.04 mg g−1, which was about 14 times higher than that in the case of the pristine BN, and the kinetic rate constant value in the case of using BC0.4N is about ten times as high as that of BN following a pseudo-second-order model, suggesting that the as-formed BC0.4N nanosheets could be potentially used as a value-added effective adsorbent for future wastewater remediation.

Funder

Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province

National Natural Science Foundation of China

Key Program of Natural Science Foundation of Hubei Province, China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3