Abstract
Abstract
Owing to their large specific areas, high thermal stability and chemical inertness, two-dimensional boron carbon nitride nanosheets (BCNNs) have captured much attention in recent years in the field of adsorption of pollutants. The formation of BCNNs via incorporating carbon into boron nitride (BN) can effectively improve the photoelectric and adsorption properties of the latter. In this work, carbon-doped BN (BCN) nanosheets were prepared at 1100 °C via a molten salt route using boric acid, melamine and glucose as the main starting materials. The effects of molten salt type and carbon doping level on the formation of BCN were investigated, and their isothermal adsorption properties in a methylene blue (MB) aqueous solution were evaluated based on the Langmuir and Freundlich models. The results indicated that using molten LiCl-KCl as a liquid medium was more favorable than NaCl-KCl to the formation of BCNNs. As-prepared BC0.4N sample possessed a sheet-like structure of about 10 nm thick and a specific surface area as high as 484 m2 g−1. Moreover, the adsorption test of MB demonstrated a high adsorption capacity of 249.04 mg g−1, which was about 14 times higher than that in the case of the pristine BN, and the kinetic rate constant value in the case of using BC0.4N is about ten times as high as that of BN following a pseudo-second-order model, suggesting that the as-formed BC0.4N nanosheets could be potentially used as a value-added effective adsorbent for future wastewater remediation.
Funder
Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province
National Natural Science Foundation of China
Key Program of Natural Science Foundation of Hubei Province, China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献