Abstract
Abstract
Three isostructural pillared-layer frameworks with M-BDC-X layers supported by ditopic HL connectors, [M(HL)(BDC)0.5X]
n
(HL = 4′-(4-hydroxyphenyl)-4,2′:6′,4″-terpyridine, BDC = terephthalate, M = Cd, X = Cl for (1), M = Cd, X = formate for (2), and M = Co, X = formate for (3)), were solvothermally synthesized, and used as photocatalysts for Pt-assisted visible-light-initiated hydrogen evolution from water splitting. These water-durable frameworks exhibit varied hydrogen production rates of 361.2, 271.3, and 327.5 μmol · g−1 · h−1 in 12 h due to their slightly different donor environments of the octahedral CdII and CoII ions. Further experimental and theoretical investigations reveal that the metal ions and the local coordination surroundings have essentially dominated the conduction band minimum and electric resistance of the charge transport, which play highly important roles for the improved catalytic hydrogen evolution ability. These findings demonstrate the electronic effect of the slightly ligand field modifications on the boosting hydrogen generation activity in the noble metal-assisted MOF photocatalytic systems.
Funder
the Program for Innovative Research Team in University of Tianjin
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献