Opportunities and challenges for 2D heterostructures in battery applications: a computational perspective

Author:

Browne StephenORCID,Waghmare Umesh VORCID,Singh AnjaliORCID

Abstract

Abstract With an increasing demand for large-scale energy storage systems, there is a need for novel electrode materials to store energy in batteries efficiently. 2D materials are promising as electrode materials for battery applications. Despite their excellent properties, none of the available single-phase 2D materials offers a combination of properties required for maximizing energy density, power density, and cycle life. This article discusses how stacking distinct 2D materials into a 2D heterostructure may open up new possibilities for battery electrodes, combining favourable characteristics and overcoming the drawbacks of constituent 2D layers. Computational studies are crucial to advancing this field rapidly with first-principles simulations of various 2D heterostructures forming the basis for such investigations that offer insights into processes that are hard to determine otherwise. We present a perspective on the current methodology, along with a review of the known 2D heterostructures as anodes and their potential for Li and Na-ion battery applications. 2D heterostructures showcase excellent tunability with different compositions. However, each of them has distinct properties, with its own set of challenges and opportunities for application in batteries. We highlight the current status and prospects to stimulate research into designing new 2D heterostructures for battery applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3