Understanding the linear and nonlinear optical responses of few-layer exfoliated MoS2 and WS2 nanoflakes: experimental and simulation studies

Author:

Abhijith T,E ShijuORCID,Suthar Rakesh,Sharma Punit,Thomas Sheenu,Karak SupravatORCID

Abstract

Abstract Understanding the linear and nonlinear optical (NLO) responses of two-dimensional nanomaterials is essential to effectively utilize them in various optoelectronic applications. Here, few-layer MoS2 and WS2 nanoflakes with lateral size less than 200 nm were prepared by liquid-phase exfoliation, and their linear and NLO responses were studied simultaneously using experimental measurements and theoretical simulations. Finite-difference time-domain (FDTD) simulations confirmed the redshift in the excitonic transitions when the thickness was increased above 10 nm indicating the layer-number dependent bandgap of nanoflakes. WS2 nanoflakes exhibited around 5 times higher absorption to scattering cross-section ratio than MoS2 nanoflakes at various wavelengths. Open aperture Z scan analysis of both the MoS2 and WS2 nanoflakes using 532 nm nanosecond laser pulses reveals strong nonlinear absorption activity with effective nonlinear absorption coefficient (β eff) of 120 cm GW−1 and 180 cm GW−1, respectively, which was attributed to the combined contributions of ground, singlet excited and triplet excited state absorption. FDTD simulation results also showed the signature of strong absorption density of few layer nanoflakes which may be account for their excellent NLO characteristics. Optical limiting threshold values of MoS2 and WS2 nanoflakes were obtained as ∼1.96 J cm−2 and 0.88 J cm−2, respectively, which are better than many of the reported values. Intensity dependent switching from saturable absorption (SA) to reverse SA was also observed for MoS2 nanoflakes when the laser intensity increased from 0.14 to 0.27 GW cm−2. The present study provides valuable information to improve the selection of two-dimensional nanomaterials for the design of highly efficient linear and nonlinear optoelectronic devices.

Funder

NPDF

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3