Development of high conducting phosphorous doped nanocrystalline thin silicon films for silicon heterojunction solar cells application

Author:

Bhattacharya Shrestha,Pandey Ashutosh,Alam Shahnawaz,Komarala Vamsi KrishnaORCID

Abstract

Abstract We have investigated the plasma-enhanced chemical vapor deposition growth of the phosphorus-doped hydrogenated nanocrystalline silicon (n-nc-Si:H) film as an electron-selective layer in silicon heterojunction (SHJ) solar cells. The effect of power densities on the precursor gas dissociation are investigated using optical emission spectra and the crystalline fraction in n-nc-Si:H films are correlated with the dark conductivity. With the P d of 122 mW cm−2 and ∼2% phosphorus doping, we observed Raman crystallinity of 53%, high dark conductivity of 43 S cm−1, and activation energy of ∼23 meV from the ∼30 nm n-nc-Si:H film. The n-nc-Si:H layer improves the textured c-Si surface passivation by two-fold to ∼2 ms compared to the phosphorus-doped hydrogenated amorphous silicon (n-a-Si:H) layers. An enhancement in the open-circuit voltage and external quantum efficiency (from >650 nm) due to the better passivation at the rear side of the cell after integrating the n-nc-Si:H layer compared to its n-a-Si:H counterpart. An improvement in the charge carrier transport is also observed with an increase in fill factor from ∼71% to ∼75%, mainly due to a reduction in electron-selective contact resistivity from ∼271 to ∼61 mΩ-cm2. Finally, with the relatively better c-Si surface passivation and carrier selectivity, a power conversion efficiency of ∼19.90% and pseudo-efficiency of ∼21.90% have been realized from the SHJ cells.

Funder

Department of Science and Technology (DST), Government of India

the Department of Science and Technology (DST), Government of India

Technology Mission Division

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3