Abstract
Abstract
One-dimensional nanowire structures composed of perovskite are widely recognized for their exceptional optoelectronic performance and mechanical properties, making them a popular area of investigation in photodetection research. In this work, a perovskite nanowire/copper phthalocyanine heterojunction-based photodetector was fabricated, which exhibits high photoresponse in the visible-near-infrared region. The incorporation of a heterojunction significantly enhanced the photoelectric performance. Specifically, the photoresponsivity and external quantum efficiency of the nanowire-based device were elevated from 58.5 A W−1 and 1.35 × 104% to 84.5 A W−1 and 1.97 × 104% at 532 nm, respectively. The enhanced photoresponse of the heterojunction device can be attributed to the unique microstructure of nanowire arrays. The wrapping of the nanowires by copper phthalocyanine forms heterojunctions with a larger dissociation area, which facilitated exciton dissociation and enhanced device performance. This work provides a promising example for optimizing the performance of nanowire devices.
Funder
Zhejiang Provincial Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献