Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films

Author:

Kunuku SrinivasuORCID,Ficek MateuszORCID,Wieloszynska Aleksandra,Tamulewicz-Szwajkowska MagdalenaORCID,Gajewski KrzysztofORCID,Sawczak Miroslaw,Lewkowicz Aneta,Ryl JacekORCID,Gotszalk TedorORCID,Bogdanowicz RobertORCID

Abstract

Abstract Boron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been synthesized on single crystalline diamond (SCD) IIa and SCD Ib substrates in a microwave plasma-assisted chemical vapor deposition process. The B/N co-doping into CVD diamond has been conducted at constant N flow of N/C ∼ 0.02 with three different B/C doping concentrations of B/C ∼ 2500 ppm, 5000 ppm, 7500 ppm. Atomic force microscopy topography depicted the flat and smooth surface with low surface roughness for low B doping, whereas surface features like hillock structures and un-epitaxial diamond crystals with high surface roughness were observed for high B doping concentrations. KPFM measurements revealed that the work function (4.74–4.94 eV) has not varied significantly for CVD diamond synthesized with different B/C concentrations. Raman spectroscopy measurements described the growth of high-quality diamond and photoluminescence studies revealed the formation of high-density nitrogen-vacancy centers in CVD diamond layers. X-ray photoelectron spectroscopy results confirmed the successful B doping and the increase in N doping with B doping concentration. The room temperature electrical resistance measurements of CVD diamond layers (B/C ∼ 7500 ppm) have shown the low resistance value ∼9.29 Ω for CVD diamond/SCD IIa, and the resistance value ∼16.55 Ω for CVD diamond/SCD Ib samples.

Funder

Fundacja na rzecz Nauki Polskiej

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference73 articles.

1. Nanocrystalline diamond films;Gruen;Annu. Rev. Mater. Sci.,1999

2. Metastable growth of diamond and ‘diamondlike’ phases;Angus;Science,1988

3. Diamond for bio-sensor applications;Nebel;J. Phys. D: Appl. Phys.,2007

4. Defect-induced stabilization of diamond films;Bar-Yam;Nature,1989

5. Doping of diamond;Kalish;Carbon,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3