A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics

Author:

Lundgren Christoffer,Kakanakova-Georgieva AneliaORCID,Gueorguiev Gueorgui KORCID

Abstract

Abstract Identification and synthesis of 2D topological insulators is particularly elusive. According to previous ab initio predictions 2D InBi (Indium Bismide) is a material exhibiting topological properties which are combined with a band gap suitable for practical applications. We employ ab initio molecular dynamics (AIMD) simulations to assess the thermal stability as well as the mechanical properties such as elastic modulus and stress–strain curves of 2D InBi. The obtained new knowledge adds further characteristics appealing to the feasibility of its synthesis and its potential applications. We find that pristine 2D InBi, H-InBi (hydrogenated 2D InBi) as well as 2D InBi heterostructures with graphene are all stable well above room temperature, being the calculated thermal stability for pristine 2D InBi 850 K and for H-InBi in the range above 500 K. The heterostructures of 2D InBi with graphene exhibit thermal stability exceeding 1000 K. In terms of mechanical properties, pristine 2D InBi exhibits similarities with another 2D material, stanene. The fracture stress for 2D InBi is estimated to be ∼3.3 GPa (∼3.6 GPa for stanene) while elastic modulus of 2D InBi reads ∼34 GPa (to compare with ∼23 GPa for stanene). Overall, the thermal stability, elastic, and fracture resistant properties of 2D InBi and its heterostructures with graphene appear as high enough to motivate future attempts directed to its synthesis and characterization.

Funder

Swedish Research Council

Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Center (NSC) in Linköping

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3