Symmetry induced phonon renormalization in few layers of 2H-MoTe2 transistors: Raman and first-principles studies

Author:

Das SubhadipORCID,Debnath Koyendrila,Chakraborty Biswanath,Singh AnjaliORCID,Grover Shivani,Muthu D V S,Waghmare U V,Sood A KORCID

Abstract

Abstract Understanding of electron–phonon coupling (EPC) in two-dimensional (2D) materials manifesting as phonon renormalization is essential to their possible applications in nanoelectronics. Here we report in situ Raman measurements of electrochemically top-gated 2, 3 and 7 layered 2H-MoTe2 channel based field-effect transistors. While the E 2 g 1 and B2g phonon modes exhibit frequency softening and linewidth broadening with hole doping concentration (p) up to ∼2.3 × 1013/cm2, A1g shows relatively small frequency hardening and linewidth sharpening. The dependence of frequency renormalization of the E 2 g 1 mode on the number of layers in these 2D crystals confirms that hole doping occurs primarily in the top two layers, in agreement with recent predictions. We present first-principles density functional theory analysis of bilayer MoTe2 that qualitatively captures our observations, and explain that a relatively stronger coupling of holes with E 2 g 1 or B2g modes as compared with the A1g mode originates from the in-plane orbital character and symmetry of the states at valence band maximum. The contrast between the manifestation of EPC in monolayer MoS2 and those observed here in a few-layered MoTe2 demonstrates the role of the symmetry of phonons and electronic states in determining the EPC in these isostructural systems.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3