Abstract
Abstract
Understanding of electron–phonon coupling (EPC) in two-dimensional (2D) materials manifesting as phonon renormalization is essential to their possible applications in nanoelectronics. Here we report in situ Raman measurements of electrochemically top-gated 2, 3 and 7 layered 2H-MoTe2 channel based field-effect transistors. While the
E
2
g
1
and B2g
phonon modes exhibit frequency softening and linewidth broadening with hole doping concentration (p) up to ∼2.3 × 1013/cm2, A1g
shows relatively small frequency hardening and linewidth sharpening. The dependence of frequency renormalization of the
E
2
g
1
mode on the number of layers in these 2D crystals confirms that hole doping occurs primarily in the top two layers, in agreement with recent predictions. We present first-principles density functional theory analysis of bilayer MoTe2 that qualitatively captures our observations, and explain that a relatively stronger coupling of holes with
E
2
g
1
or B2g
modes as compared with the A1g
mode originates from the in-plane orbital character and symmetry of the states at valence band maximum. The contrast between the manifestation of EPC in monolayer MoS2 and those observed here in a few-layered MoTe2 demonstrates the role of the symmetry of phonons and electronic states in determining the EPC in these isostructural systems.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献