Polarization improvement of perovskite nanowire composite films by mechanical stretching method

Author:

Zhang Sihan,Xiao Kaiwen,Zhang Yu,Ji Yucong,Wang Jiaxin,Chen JunORCID

Abstract

Abstract Perovskite nanowires (NWs) have attracted considerable interest because of their excellent polarization properties. In this work, we first synthesized colloidal lead halide CsPbBr3 NWs with suitable lengths and excellent polarization performance by the method of the thermal injection. By embedding the NWs in polyvinyl alcohol (PVA) to prepare practical a polymer composite and combining it with the mechanical stretching method, we achieved films with higher polarizing properties. The optimized stretched composite film achieved a polarization degree of 0.4992, which is superior to that of the unstretched one. The stretched PVA molecules are arranged in a straight line, which absorbs the polarized light parallel to the alignment direction, and only allows the polarized light in the vertical direction to pass through. Therefore, the arrangement of the spin-coated NWs combined with the arrangement direction of the PVA molecules led to an improvement in the polarization performance of the composite film. The NWs-PVA-stretched composite films will show important application value in the manufacture of next-generation polarization-sensitive optoelectronic devices and other fields.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3