Recent advances in MXene-based nanocomposites for supercapacitors

Author:

Yi Sha,Wang Lei,Zhang XiongORCID,Li Chen,Xu Yanan,Wang Kai,Sun Xianzhong,Ma YanweiORCID

Abstract

Abstract MXene materials have become a competitive candidate for electrochemical energy storage due to their unique two-dimensional layered structure, high density, metal-like conductivity, fast ion intercalation, tunable surface terminal groups, and good mechanical flexibilities, showing unique application advantages in the field of supercapacitors. With widely research of MXene in energy storage applications, plenty of studies in synthesis strategies of MXene, including etching, intercalation and exfoliation processes, and its charge storage mechanism in supercapacitors have been conducted. However, the restacking of two-dimensional MXene nanosheets severely affects their electrochemical performance. To prevent the stacking of MXene, MXene-based nanocomposite electrode materials have been developed with remarkable electrochemical performance by incorporating conventional active capacitive materials, including metal oxides/sulfides and conductive polymers, with MXene. This review summarizes the etching strategies of MXenes and selection of intercalants, also discusses the charge storage mechanism of MXenes in aqueous and nonaqueous electrolytes. It mainly expounds the preparation strategies and applications of MXene-based nanocomposites in supercapacitors, including MXene/metal oxide, MXene/metal sulfide, MXene/conducting polymer, and MXene/carbon-based composites. Additionally, the advantages of combining MXene with other active materials in supercapacitor applications, which support its promising prospects, are discussed. Finally, the critical challenges faced by MXene-based nanocomposites in long-term research are mentioned.

Funder

Key Research Program of Frontier Sciences

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3