Frequency dependent impedance response analysis of nanocrystalline ZnO chemiresistors

Author:

P V Abhijith,Tom Abin,Urs KusumaORCID,Prajapati K NORCID,S Sajana,Mitra JORCID,Jaiswal-Nagar DeepshikhaORCID,Kamble Vinayak BORCID

Abstract

Abstract ZnO is a widely studied gas sensor material and is used in many commercial sensor devices. However, selectivity towards any particular gas remains an issue due to lack of complete knowledge of the gas sensing mechanism of oxide surfaces. In this paper, we have studied the frequency dependent gas sensor response of ZnO nanoparticles of a diameter of nearly 30 nm. A small rise of synthesis temperature from 85 °C to 95 °C in the solvothermal process, shows coarsening by joining and thereby distinct loss of grain boundaries as seen from transmission electron micrographs. This leads to a substantial reduction in impedance, Z (GΩ to MΩ), and rises in resonance frequency f res (from 1 to 10 Hz) at room temperature. From temperature dependent studies it is observed that the grain boundaries show a Correlated Barrier Hopping mechanism of transport and the hopping range in the grain boundary region is typically 1 nm with a hopping energy of 153 meV. On the other hand, within the grain, it shows a change of transport type from low temperature tunneling to beyond 300 °C as polaron hopping. The presence of disorder (defects) as the hopping sites. The temperature dependence of f res agrees with different predicted oxygen chemisorbed species between 200 °C to 400 °C. As opposed to the traditional DC response, the AC response in the imaginary part of (Z″) shows gas specific resonance frequencies for each gas, such as NO2, ethanol, and H2. Among the two reducing gases, ethanol and hydrogen; the former shows good dependence on concentration in Z″ whereas the latter shows a good response in f res as well as capacitance. Thus, the results of frequency dependent response allow us to investigate greater details of the gas sensing mechanism in ZnO, which may be exploited for selective gas sensing.

Funder

Science and Engineering Research Board

Mission on Nano Science and Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3