Spatially confined synthesis of large-sized MoS2 nanosheets in molten KSCN toward efficient hydrogen evolution

Author:

Nan Kaikai,Chen Qing,Wang Zuhao,Cheng Long,Liu DezhengORCID,Du HongfangORCID,Lin LiangxuORCID

Abstract

Abstract Low-temperature KSCN molten salt is a promising technique to synthesize defect-rich MoS2 catalysts for hydrogen evolution reaction (HER). However, owing to the fast ion diffusion rate for rapid crystal growth, the resultant catalysts show a morphology of microsphere, which aggregates from MoS2 nanosheets, to suppress the catalytic performance. In this work, large-sized few-layer MoS2 nanosheets are synthesized via a spatial confinement strategy by adding inert NaCl into the KSCN molten salt. With the NaCl spacer to physically block the long-distance ion diffusion and isolate the chemical reaction, the MoS2 nucleation and subsequent crystal growth could be controlled, guiding the nanosheets to grow along the narrow gap between the NaCl crystals to avoid aggregation. As a result, ultrathin MoS2 nanosheets with a large geometry size are constructed. Profiting from the architecture to expose active sites and boost charge transfer kinetics, the large-sized few-layer MoS2 nanosheets exhibit an impressive HER performance, showing a small η 10 of 160 mV and a low Tafel slope of 53 mV dec−1 with excellent stability. This work provides not only an efficient HER catalyst but also a facile spatial confinement technique to design and synthesize a large spectrum of transition metal sulfides for broad uses.

Funder

Independent Innovation Projects of the Hubei Longzhong Laboratory

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Fujian Normal University for Young and Middle-aged Teachers Training Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3