Abstract
Abstract
Porous C3N4 (PCN) is favored by researchers because it has more surface active sites, higher specific surface area and stronger light absorption ability than traditional g–C3N4. In this study, cerium dioxide nanoparticles (CeO2–NPs) with mixed valence state of Ce3+ and Ce4+ were doped into the PCN framework by a two-step method. The results indicate that CeO2–NPs are highly dispersed in the PCN framework, which leads to a narrower band gap, a wider range of the light response and an improved the separation efficiency of photogenerated charge in PCN. Moreover, the specific surface area (145.69 m2 g−1) of CeO2–NPs doped PCN is a 25.5% enhancement than that of PCN (116.13 m2 g−1). In the experiment of photocatalytic selective oxidation of benzyl alcohol, CeO2–NPs doped porous C3N4 exhibits excellent photocatalytic activity, especially Ce–PCN–30. The conversion rate of benzyl alcohol reaches 74.9% using Ce–PCN−30 as photocatalyst by 8 h of illumination, which is 25.7% higher than that of pure porous C3N4. Additionally, CeO2–NPs doped porous C3N4 also exhibits better photocatalytic efficiency for other aromatic alcohols.
Funder
MOE & SAFEA, 111 Project
International Joint Research Laboratory for Biomass Conversion Technology at Jinagnan University. International exchange and cooperation projects
Postgraduate Research & Practice Innovation Program of Jiangsu Province
the fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献