Investigation of ultrafast demagnetization and Gilbert damping and their correlation in different ferromagnetic thin films grown under identical conditions

Author:

Mukhopadhyay Suchetana,Majumder Sudip,Narayan Panda Surya,Barman AnjanORCID

Abstract

Abstract Following the demonstration of laser-induced ultrafast demagnetization in ferromagnetic nickel, several theoretical and phenomenological propositions have sought to uncover its underlying physics. In this work we revisit the three temperature model (3TM) and the microscopic three temperature model (M3TM) to perform a comparative analysis of ultrafast demagnetization in 20 nm thick cobalt, nickel and permalloy thin films measured using an all-optical pump-probe technique. In addition to the ultrafast dynamics at the femtosecond timescales, the nanosecond magnetization precession and damping are recorded at various pump excitation fluences revealing a fluence-dependent enhancement in both the demagnetization times and the damping factors. We confirm that the Curie temperature to magnetic moment ratio of a given system acts as a figure of merit for the demagnetization time, while the demagnetization times and damping factors show an apparent sensitivity to the density of states at the Fermi level for a given system. Further, from numerical simulations of the ultrafast demagnetization based on both the 3TM and the M3TM, we extract the reservoir coupling parameters that best reproduce the experimental data and estimate the value of the spin flip scattering probability for each system. We discuss how the fluence-dependence of inter-reservoir coupling parameters so extracted may reflect a role played by nonthermal electrons in the magnetization dynamics at low laser fluences.

Funder

Department of Science and Technology, Government of India

SN Bose National Center for Basic Sciences

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3