Simulation for multiwavelength large-aperture all-silicon metalenses in long-wave infrared

Author:

Hao JunboORCID,Ma Ting,Ye Zilin,Chen Chen,Yang Dahai,Zhou Keya,Wang Yiqun,Jin Peng,Lin JieORCID

Abstract

Abstract Long-wave infrared imaging systems are widely used in the field of environmental monitoring and imaging guidance. As the core components, the long-wave infrared lenses suffer the conditions of less available materials, difficult processing, large volume and mass. Metalens composed of sub-wavelength structures is one of the most potential candidates to achieve a lightweight and planar optical imaging systems. Meanwhile, it is essential to obtain large-aperture infrared lenses with high power and high resolution. However, it is difficult to use the finite-difference time-domain method to simulate a large-aperture metalens with the diameter of 201 mm due to the large amount of computational memory and computational time required. Here, to solve the mentioned problem, we firstly propose a simulation method for designing a large-aperture metalens, which combines the finite-difference time-domain algorithm and diffraction integration. The finite-difference time-domain algorithm is used to simulate the meta-atom’s transmitted complex amplitude and the one-dimensional simplification of the diffraction integral is to calculate the focused field distributions of the designed metalens. Furthermore, the meta-atom spatial multiplexing is applied to design the all-silicon metalenses with the aperture of 201 mm to realize dual-wavelength (10 and 11 μm) achromatic focusing, super anomalous dispersion focusing and super normal dispersion focusing. The designed metalenses are numerically confirmed, which reveal the feasibility of all-silicon sub-wavelength structures to accomplish the multiwavelength dispersion control. The designed all-silicon metalenses have the advantage of lightweight and compact. The proposed method is effective for the development of large-aperture imaging systems in the long-wave infrared.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3