Influence of oxygen vacancy defects on Aurivillius phase layered perovskite oxides of bismuth towards photocatalytic environmental remediation

Author:

Sharma ManishaORCID,Kumar AshishORCID,Krishnan VenkataORCID

Abstract

Abstract The low light absorption and rapid recombination of photogenerated charge carriers are primary contributors to the low activity of various photocatalysts. Fabrication of oxygen vacancy defect-rich materials for improved photocatalytic activities has been attracting tremendous attention from researchers all over the world. In this work, we have compared the photocatalytic activities of oxygen vacancy-rich Bi2MoO6 (BMO-OV) and Bi2WO6 (BWO-OV) for the degradation of a model pharmaceutical pollutant, ciprofloxacin under visible light irradiation. The photocatalytic activity was increased from 47% to 77% and 40% to–67% for BMO-OV and BWO-OV, respectively in comparison to pristine oxides. This enhancement can be ascribed to suppressed charge carrier recombination and increased surface active sites. In addition, scavenger studies have been done to explain the role of photoinduced charge carriers in the degradation mechanism. Moreover, oxygen vacancy-rich photocatalysts have remained stable even after three consecutive cycles, making them promising materials for practical applications. Overall, this work provides deeper insight into the design and development of oxygen vacancy-rich materials.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3