Dye-sensitized solar cells based on anatase- and brookite-TiO2: enhancing performance through optimization of phase composition, morphology and device architecture

Author:

Khazaei Mobina,Mohammadi M RORCID,Li YuningORCID

Abstract

Abstract Herein, we demonstrate an optimization of dye-sensitized solar cells (DSSCs) through the development of single-layer and double-layer configurations. Focusing on the incorporation of brookite and anatase phases in varying ratios, the study aims to determine the optimal composition for enhanced photovoltaic performance. The active layer, composed of anatase- and brookite-TiO2 nanoparticles, is further modified with a scattering layer comprising a mixture of anatase nanoparticles and brookite-TiO2 in the form of nanocube or rice-like particles. The synthesis of TiO2 nanostructures with various morphologies and phase compositions and their subsequent application in single-layer and double-layer DSSCs are presented. The results highlight the superior light-harvesting capabilities achieved through the strategic incorporation of brookite phase into the anatase phase, emphasizing the importance of optimizing the anatase: brookite ratio. The single-layer DSSCs exhibit a peak efficiency of 8.73%, achieved with a composition of 30 wt.% brookite and 70 wt.% anatase at a thickness of 15 μms. In the context of double-layer DSSCs, the combined optimization of the active layer composition, scattering layer morphology, and utilization of anatase nanoparticles leads to a remarkable efficiency of 9.18%. These findings underscore the critical role of composition and morphology in enhancing the performance of DSSCs, showcasing the potential for brookite-based DSSCs in solar energy conversion.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3