Ultrafast THz spectroscopy of carbon nanotube-graphene composites

Author:

Burdanova Maria G,Tsapenko Alexey PORCID,Ahmad SaeedORCID,Kauppinen Esko I,Lloyd-Hughes JamesORCID

Abstract

Abstract Mixed nanomaterial composites can combine the excellent properties of well-known low-dimensional nanomaterials. Here we highlight the potential of one-dimensional single-walled carbon nanotubes interfaced with two-dimensional graphene by exploring the composite’s ac conductivity and photoconductivity, and the influence of HAuCl4 doping. In the composite, the equilibrium terahertz conductivity from free carrier motion was boosted, while the localised plasmon peak shifted towards higher frequencies, which we attribute to shorter conductivity pathways in the composite. A negative terahertz photoconductivity was observed for all samples under 410 nm optical excitation and was reproduced by a simple model, where the Drude spectral weight and the momentum scattering rate were both lowered under photoexcitation. The composite had an enhanced modulation depth in comparison to reference carbon nanotube films, while retaining their characteristically fast (picosecond) response time. The results show that carbon nanotube-graphene composites offer new opportunities in devices by controlling charge carrier transport and tuning their optoelectronic properties.

Funder

Academy of Finland

Magnus Ehrnroothin Säätiö

Opetushallitus

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3