Bibliometric analysis of aptamer-conjugated nanoparticles for diagnosis in the last two decades

Author:

Liu Mao-ShengORCID,Zhong Si-Si,Jiang Song,Wang Ting,Zhang Kun-He

Abstract

Abstract Objective. Aptamer-conjugated nanoparticles for diagnosis have recently gained increasing attention. Here, we performed a bibliometric analysis to provide an overview of this field over the past two decades. Methods. The terms ‘aptamer, nanoparticles and diagnosis’ were used to search for relevant original articles published in English from 2003 to 2022 in the Web of Science database. VOSviewer and CiteSpace software were employed to analyze the development process, knowledge structure, research hotspots, and potential trends in the field of aptamer-conjugated nanoparticles for diagnosis. Results. A total of 1076 original articles were retrieved, with a rapid increase in the annual output and citation. The journal ‘Biosensors and Bioelectronics’ has contributed the most in this field, and the most influential researcher, institution and country were Weihong Tan, the Chinese Academy of Sciences, China, respectively. Gold nanoparticles and quantum dots were the most used, but in the past three years, research hotspots focused on carbon dots and graphene quantum dots. Diagnostic directions primarily focused on cancer. The most used strategy was label-free electrochemical detection, but in the past two years, colorimetric analysis and fluorescence imaging emerged as hot topics. Conclusion. The bibliometric analysis reveals a rapid increase in the research on aptamer-conjugated nanoparticles for diagnosis, major contributors at the levels of journals, authors, institutions, and countries, and research preferences in diagnostic objects, nanoparticle types, and detection methods, as well as the evolution of research hotspots and future trends.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3