Influence of chemical and electronic inhomogeneities of graphene/copper on the growth of oxide thin films: the ZnO/graphene/copper case

Author:

Morales Carlos,Urbanos Fernando J,del Campo Adolfo,Leinen Dietmar,Granados Daniel,Prieto Pilar,Aballe LucíaORCID,Foerster MichaelORCID,Soriano LeonardoORCID

Abstract

Abstract The interaction of graphene with metal oxides is essential for understanding and controlling new devices’ fabrication based on these materials. The growth of metal oxides on graphene/substrate systems constitutes a challenging task due to the graphene surface’s hydrophobic nature. In general, different pre-treatments should be performed before deposition to ensure a homogenous growth depending on the deposition technique, the metal oxide, and the surface’s specific nature. Among these factors, the initial state and interaction of graphene with its substrate is the most important. Therefore, it is imperative to study the initial local state of graphene and relate it to the early stages of metal oxides’ growth characteristics. Taking as initial samples graphene grown by chemical vapor deposition on polycrystalline Cu sheets and then exposed to ambient conditions, this article presents a local study of the inhomogeneities of this air-exposed graphene and how they influence on the subsequent ZnO growth. Firstly, by spatially correlating Raman and x-ray photoemission spectroscopies at the micro and nanoscales, it is shown how chemical species present in air intercalate inhomogeneously between Graphene and Cu. The reason for this is precisely the polycrystalline nature of the Cu support. Moreover, these local inhomogeneities also affect the oxidation level of the uppermost layer of Cu and, consequently, the electronic coupling between graphene and the metallic substrate. In second place, through the same characterization techniques, it is shown how the initial state of graphene/Cu sheets influences the local inhomogeneities of the ZnO deposit during the early stages of growth in terms of both, stoichiometry and morphology. Finally, as a proof of concept, it is shown how altering the initial chemical state and interaction of Graphene with Cu can be used to control the properties of the ZnO deposits.

Funder

Ministerio de Economía y Competitividad

Ministerio de Educación, Cultura y Deporte

Comunidad de Madrid

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3