Abstract
Abstract
The serious side effects of cisplatin hindered its clinical application and the nanotechnology might be the potential strategy to address the limitation. However, rapid clearance in the blood circulation and ineffective controlled drug release from nanocarriers hamper the therapeutic efficacy of the nano-delivery system. We constructed a tumor microenvironment and redox dual stimuli-responsive nano-delivery system PEG-c-(BPEI-SS-Pt) by cross-linking the disulfide-containing polymeric conjugate BPEI-SS-Pt with the dialdehyde group-modified PEG2000 via Schiff base. After optimized the cross-linking time, 72 h was selected to get the nano-delivery system. 1H NMR and drug release assays showed that under the acidic tumor microenvironment (pH 6.5–6.8), the Schiff base can be broken and detached the PEG cross-linked outer shells, displaying the capability to release the drugs with a sequential pH- and redox-responsive manner. Moreover, PEG-c-(BPEI-SS-Pt) showed more effective anti-tumor therapeutic efficacy in vivo with no significant side effects when compared with the drug of cisplatin used in the clinic. This strategy highlights a promising platform with the dual stimuli-responsive profile to achieve better therapeutic efficacy and minor side effects for platinum-based chemotherapy.
Funder
National Natural Science Foundation of China
Research and Development Program of Shaanxi Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献