Engineering SnO2 nanorods/ethylenediamine-modified graphene heterojunctions with selective adsorption and electronic structure modulation for ultrasensitive room-temperature NO2 detection

Author:

Zheng Shengliang,Sun Jianyong,Hao JuanyuanORCID,Sun Quan,Wan Peng,Li Yue,Zhou Xin,Yuan YeORCID,Zhang Xu,Wang YouORCID

Abstract

Abstract Ever-increasing concerns over air quality and the newly emerged internet of things (IoT) for future environmental monitoring are stimulating the development of ultrasensitive room-temperature gas sensors, especially for nitrogen dioxide (NO2), one of the most harmful air pollution species released round-the-clock from power plants and vehicle exhausts. Herein, tin dioxide nanorods/ethylenediamine-modified reduced graphene oxide (SnO2/EDA-rGO) heterojunctions with selective adsorption and electronic structure modulation were engineered for highly sensitive and selective detection of NO2 at room temperature. The modified EDA groups not only enable selective adsorption to significantly enrich NO2 molecules around the interface but also realize a favorable modulation of SnO2/EDA-rGO electronic structure by increasing the Fermi level of rGO, through which the sensing performance of NO2 is synergistically enhanced. The response of the SnO2/EDA-rGO sensor toward 1 ppm NO2 reaches 282%, which exceeds the corresponding SnO2/rGO sensor by a factor of 2.8. It also exhibits a low detection limit down to 100 ppb, enhanced selectivity, and rapid response/recovery kinetics. This approach to designing a novel heterojunction with significantly enhanced chemical and electric effects may shed light on the future engineering of gas-sensing materials.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Applied Technology Research and Development Program of Heilongjiang Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3