Manipulating liquid metal flow for creating standalone structures with micro-and nano-scale features in a single step

Author:

Shastri Vijayendra,Talukder Santanu,Roy Kaustav,Kumar PraveenORCID,Pratap RudraORCID

Abstract

Abstract Standalone structures with periodic surface undulations or ripples can be spontaneously created upon flowing a liquid metal, e.g. Ga, over a metallic film, e.g. Pt, Au, etc, through a complex ‘wetting-reaction’-driven process. Due to the ability of 3-dimensional patterning at the small length scale in a single step, the liquid metal ‘ripple’ flow is a promising non-conventional patterning technique. Herein, we examine the effect of a few process parameters, such as distance away from the liquid reservoir, size of the liquid reservoir, and the geometry, thickness, and width of substrate metal film, on the nature of the ripple flow to produce finer patterns with feature sizes of ≤ 2 μm. The height and the pitch of the pattern decrease with distance from the liquid reservoir and decrease in the reservoir volume. Furthermore, a decrease in the thickness and width of the substrate film also leads to a decrease in the height and pitch of the ripples. Finally, the application of an external electric field also controls the ripple patterns. By optimizing various parameters, standalone ripple structures of Ga with the height and pitch of ≤ 500 nm are created. As potential applications, the ripple patterns with micro-and nano-scopic features are demonstrated to produce a diffraction grating and a die for micro-stamping.

Funder

Department of Science and Technology, Government of India

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3