H-BN nanosheets obtained by mechanochemical processes and its application in lamellar hybrid with graphene oxide

Author:

Queiroz Sara MORCID,Medeiros Felipe S,de Vasconcelos Cláudia K BORCID,Silva Glaura GORCID

Abstract

Abstract Nowadays, hexagonal boron nitride nanosheets (h-BNNS) have shown promising results among 2D nanomaterials. A great effort has been made in recent years to obtain h-BNNS with a high-yield process to enable its large-scale application in industrial plants. In this work, we developed a mechanochemical method for obtaining h-BN nanosheets assisted by NaOH aqueous solution as process aid and aimed the ideal balance between yield, quality and process sustainability. Images obtained by transmission electron microscope suggested a great exfoliation of the h-BNNS in the range of 12–38 layers observed for well dispersed nanosheets. The macroscopic stability study, the polydispersity index, hydrodynamic diameter, and Zeta potential measurements suggested that material prepared in autoclave and ball milling followed by tip sonication process at 40 °C (h-BNNS-T40) could be considered the most promising material. The process used in this case reached a yield of about 37% of nanosheets with an optimal balance between quality and practicality. A hybrid lamellar material was also prepared by drop-casting and dip-coating techniques. An increase on thermal stability in oxidizing atmosphere was observed with respect to the pure graphene oxide (GO). Fourier transformation infrared spectroscopy and RAMAN suggested the presence of chemical interactions between h-BNNS and GO in the hybrid. This fact supports the interest of extending the study of this hybrid (which has an easy preparation method) to further explore its applicability.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3