External bias dependent dynamic terahertz propagation through BiFeO3 film

Author:

Jana Arun,Rane ShreeyaORCID,Roy Choudhury Palash,Roy Chowdhury DibakarORCID

Abstract

Abstract Interactions of terahertz radiations with matter can lead to the realization of functional devices related to sensing, high-speed communications, non-destructive testing, spectroscopy, etc In spite of the versatile applications that THz can offer, progress in this field is still suffering due to the dearth of suitable responsive materials. In this context, we have experimentally investigated emerging multiferroic BiFeO3 film (∼200 nm) employing terahertz time-domain spectroscopy (THz-TDS) under vertically applied (THz propagation in the same direction) electric fields. Our experiments reveal dynamic modulation of THz amplitude (up to about 7% within 0.2–1 THz frequency range) because of the variation in electric field from 0 to 600 kV cm−1. Further, we have captured signatures of the hysteretic nature of polarization switching in BiFeO3 film through non-contact THz-TDS technique, similar trends are observed in switching spectroscopy piezoresponse force microscope measurements. We postulate the modulation of THz transmissions to the alignment/switching of ferroelectric polarization domains (under applied electric fields) leading to the reduced THz scattering losses (hence, reduced refractive index) experienced in the BiFeO3 film. This work indicates ample opportunities in integrating nanoscale multiferroic material systems with THz photonics in order to incorporate dynamic functionalities to realize futuristic THz devices.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3