Large-scale and tunable transparent displays based on silver nanoparticles metasurface

Author:

Chu Bo,Li YanORCID,Qin YihengORCID,Hu Taozheng,Zhong Facheng,Zeng Fanguang,Ding PeiORCID,Shao Li,Du Yinxiao,Tian Shuo,Chen ZhuoORCID

Abstract

Abstract We report a transparent display based on a metasurface of silver nanoparticles (Ag NPs), consisting of a transparent substrate and a layer of Ag NPs deposited by a dielectric film. The Ag NPs metasurface is prepared by a simple and direct annealing process. It presents a deep transmission valley at the wavelength of λ = 468 nm and enables desired transparent display by projecting the monochromatic image onto the metasurface. We also demonstrate that the formed Ag NPs can be approximated as truncated nanospheres, which have obvious directional scattering properties, and can radiate most of the scattered energy into the backward hemisphere with a relatively large angular beamwidth (the full width at half maximum of the scattered intensity) of ∼90°. Therefore, the fabricated displays possess wide viewing angles and high brightness characteristics. Additionally, the transmission modes can be red-shifted to the wavelength of λ = 527 nm by controlling the thickness of the deposited dielectric film. This approach using traditional thin film deposition and moderate annealing processing techniques enables simple, low-cost, and scalable fabrication in large areas for transparent displays.

Funder

Graduate Education Innovation Program fund of Zhengzhou University of Aeronautics

Key Research Project of Colleges and Universities in Henan Province

China Scholarship Council Government-Sponsored Study-Abroad Program

Natural Science Foundations of Henan Province

Program for Innovative Research Team (in Science and Technology) in University of Henan Province

Special Plan for Basic Research of Key Scientific Research Projects of Colleges and Universities in Henan Province

Innovation and Entrepreneurship Training Programme for University Students

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3