Coal-based ultrathin N-doped carbon nanosheets synthesized by molten-salt method for high-performance lithium-ion batteries

Author:

Gao Shasha,Liu LangORCID,Mao Feifei,Zhang Zhang,Pan Kecheng,Zhou ZhenORCID

Abstract

Abstract Coal is a typical fossil fuel and it is also a natural carbon material, therefore, converting it to functional carbon materials is an effective way to enhance the economic advantages of coal. Here, ultrathin N-doped carbon nanosheets were prepared from low-cost coal via a handy and green molten-salt method, which shown excellent performance for lithium-ion batteries (LIBs). The formation mechanism of ultrathin nanosheets was studied in detail. The eutectic molten salts possess low melting points and become a strong polar solvent at the calcined temperature, making the acidified coal miscible with them in very homogeneously state. Therefore, they can play a gigantic role in in situ pore-forming during the carbonization and induce the formation of ultrathin nanosheets due to the salt ions. Simultaneously, the ultrathin N-doped carbon nanosheets with rich defects and controllable surface area was smoothly prepared without any more complex process while revealing brilliant electrochemical performance due to rich ion diffusion pathways. It delivers reversible capacity of 727.0 mAh g−1 at 0.2 A g−1 after 150 cycles. Thus, the molten-salt method broadens the avenue to construct porous carbon materials with tailor-made morphologies. Equally important, this approach provides a step toward the sustainable materials design and chemical science in the future.

Funder

National Natural Science Foundation of China

Nanhu Scholars Program for Young Scholars of XYNU

Key Research Projects of Henan Provincial Department of Education

Analysis Testing Center of Xinyang Normal University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3