Coexistence of tetragonal and cubic phase induced complex magnetic behaviour in CoMn2O4 nanoparticles

Author:

Rajput SanjnaORCID,Yadav Manish,Dehury Taranga,Yadav Akhilesh Kumar,Sahoo Pratap KumarORCID,Rath ChandanaORCID

Abstract

Abstract CoMn2O4, known for its extensive range of applications, has been subject to limited investigations regarding its structure dependent magnetic properties. Here, we have examined the structure dependent magnetic properties of CoMn2O4 nanoparticles synthesized through a facile coprecipitation technique and are characterized using x-ray diffractometer, x-ray photoelectron spectroscopy (XPS), RAMAN spectroscopy, transmission electron microscopy and magnetic measurements. Rietveld refinement of the x-ray diffraction pattern reveals the coexistence of 91.84% of tetragonal and 8.16% of cubic phase. The cation distribution for tetragonal and cubic phases are (Co0.94Mn0.06)[Co0.06Mn1.94]O4 and (Co0.04Mn0.96)[Co0.96Mn1.04]O4, respectively. While Raman spectra and selected area electron diffraction pattern confirm the spinel structure, both +2 and +3 oxidation states for Co and Mn confirmed by XPS further corroborate the cation distribution. Magnetic measurement shows two magnetic transitions, Tc1 at 165 K and Tc2 at 93 K corresponding to paramagnetic to a lower magnetically ordered ferrimagnetic state followed by a higher magnetically ordered ferrimagnetic state, respectively. While Tc1 is attributed to the cubic phase having inverse spinel structure, Tc2 corresponds to the tetragonal phase with normal spinel. In contrast to general temperature dependent H C observed in ferrimagnetic material, an unusual temperature dependent H C with high spontaneous exchange bias of 2.971 kOe and conventional exchange bias of 3.316 kOe at 50 K are observed. Interestingly, a high vertical magnetization shift (VMS) of 2.5 emu g−1 is observed at 5 K, attributed to the Yafet–Kittel spin structure of Mn3+ in the octahedral site. Such unusual results are discussed on the basis of competition between the non-collinear triangular spin canting configuration of Mn3+ cations of octahedral sites and collinear spins of tetrahedral site. The observed VMS has the potential to revolutionize the future of ultrahigh density magnetic recording technology.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exchange Bias in Nanostructures: An Update;Nanomaterials;2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3